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Abstract - In this paper we examine the performance of IIR 

filters. Cauer or Elliptical IIR filter cost performance is 

compare with other Butterworth filter and Chebyshev 

filter. We have been analyzed on the basis of filter order, 

multiplier, adder, no of states, MPIS and APIS. The 

Elliptical IIR Filter is examined and comparison from the 

Butterworth and Chebyshev is done. The Elliptical Filter is 

minimizing the order of filter optimal to 75% to 

Butterworth Filter, and 42.5% to Chebyshev. 
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[A] INTRODUCTION 
 

1. Need of IIR Filters 
 

Digital filters with finite-duration impulse response (all-

zero, or FIR filters) have both advantages and 

disadvantages compared to infinite-duration impulse 

response (IIR) filters.  

FIR filters have the following primary advantages: 

• They can have exactly linear phase. 

• They are always stable. 

• The design methods are generally linear. 

• They can be realized efficiently in hardware. 

• The filter startup transients have finite 

duration. 

The primary disadvantage of FIR filters is that they often 

require a much higher filter order than IIR filters to 

achieve a given level of performance. Correspondingly, the 

delay of these filters is often much greater than for an 

equal performance IIR filters. 

The IIR Filter parameter allows you to specify 

Butterworth, Chebyshev type I, Chebyshev type II, and 

elliptic filter designs. Note that for the band pass and band 

stop configurations, the actual filter length is twice the 

Filter order parameter value. [7] 

TABLE 1.1 
IIR FILTER TYPES  

 
Filter Design Description 

 

Butterworth 

The magnitude response of a Butterworth filter is 

maximally flat (i.e. has no Ripples) in the pass 

band and monotonic overall. 

 

Chebyshev type I 

The magnitude response of a Chebyshev type I 

filter is equiripple in the pass band and monotonic 

in the stop band. 

 

Chebyshev type II 

The magnitude response of a Chebyshev type II 

filter is monotonic in the pass band and equiripple 

in the stop band. 

 

   Elliptic 

The magnitude response of an elliptic filter is 

equiripple in both the pass band and the stop band. 

 
 

2.  BUTTERWORTH FILTER 
 
The gain of an n-order Butterworth low pass filter is given 

in terms of the transfer function H(s) as [6]. 
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����� = |��	ω�|� = ���
1 + � ������         … … … .        2.1 

Where 

•  n = order of filter 

• ��= cutoff frequency (approximately the -3dB 

frequency) 

• �� is the DC gain (gain at zero frequency) 

It can be seen that as n approaches infinity, the gain 

becomes a rectangle function and frequencies below ��will 

be passed with gain ��, while frequencies above ωc will be 

suppressed. For smaller values of n, the cutoff will be less 

sharp. 

We wish to determine the transfer function H(s) where � =� + 	�  (from Laplace transform).  
 

Since |����|� = ���������������    and as a general property of 

Laplace transforms at � = 	�    ��−	�� = ��−��������������   [6].  

, then if we select H(s) such that: 

 

������−�� = �02
1 + �−�2��2  !           … … … … … … .       2.2       

Then for imaginary inputs, � = 	�, we have the frequency 

response of the Butterworth filter. 

The n poles of this expression occur on a circle of radius 

ωc at equally-spaced points, and symmetric around the 

imaginary axis. For stability, the transfer function, H(s), is 

therefore chosen such that it contains only the poles in the 

negative real half-plane of s. The kth pole is specified by 

− �"���� = �−1�#� = $%&��'%#�'�              ( = 1,2,3 … … 

And hence 

�+ = �� $%&��'%#�'�                              ( = 1,2,3, … … … 

The transfer function may be written in terms of these 

poles as [6] 

 

���� = ��∏ �� − �"� ��-�".#                       … … … .      2.3 

 

The denominator is a Butterworth polynomial in s.  

 
 

Fig. 2.1 Plot of the gain of Butterworth low-pass filters. [6] 
 

Where �� is the filter gain and ω� = 0.11453 is the 3dB 

cut-off frequency and N=18 is the order of the filter. The 

magnitude response of the Butterworth filter is shown in 

figure 2.1. 
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Fig. 2.2 Magnitude response of a butterworth Low pass fil
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Fig. 2.3 cost of a Butterworth Low pass filter 

3. Chebyshev type I  
 

Chebyshev filters are analog or digital filters having a 

steeper  roll-off and more pass band ripple (type I) or     

 stop band ripple (type II) than Butterworth filters. 

Type I Chebyshev filters are the most common types of 

Chebyshev filters. The gain (or amplitude) response as a 

function of angular frequency ω of the nth-order low-pass 

filter is equal to the absolute value of the transfer function  ���	�� 

����� = |���	��| = 111 + 2� � ���� 3��     … … .                    3.1 

Where 4 is the ripple factor, ��  is the cut off frequency 

and 3� is a Chebyshev polynomial of the nth order.  

The pass band exhibits equiripple behavior, with the ripple 

determined by the ripple factor 4 . In the pass band, the 

Chebyshev polynomial alternates between -1 and 1 so the 

filter gain alternate between maxima at G = 1 and minima  

at  � = 1 √1 + 2�-   . At the cutoff frequency   �� the gain 

again has the value 1 √1 + 2�-     but continues to drop into 

the stop band as the frequency increases. This behavior is 

shown in the diagram on the right. The common practice of 

defining the cutoff frequency at −3 dB is usually not 

applied to Chebyshev filters; instead the cutoff is taken as 

the point at which the gain falls to the value of the ripple 

for the final time. 

The order of a Chebyshev filter is equal to the number 

of reactive components (for example, inductors) needed to 

realize the filter using analog electronics. 

The ripple is often given in dB: 

                              Ripple in dB =    20 log#� √1 + 2� 

So that a ripple amplitude of 3 dB results from 2 = 1. 

 
 

 
Fig.3.1 The frequency response of a 4th order type 1 chebyshev low pass 

filter with 2 = 1   Error!  Reference source not found. [6] 

 

Fig. 3.2 Magnitude response of a Chebyshev-1 Low pass filter with 2 = 0.02628148 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-400

-350

-300

-250

-200

-150

-100

-50

0

 

 

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Magnitude Response (dB)

 Chebyshev type I



International Journal of Advanced Engineering Research and Science (IJAERS)                                    [Vol-2, Issue-3, March.- 2015] 

ISSN: 2349-6495 

 

P a g e  | 32 

 

 

FILTER 
ORDER 

MUL. ADDER STATES MPIS APIS 

 
10 

 

 
21 

 
20 

 
10 

 
21 

 
20 

 

Fig. 3.3 cost of a Chebyshev-I Low pass filter 

4. Chebyshev type II 

Also known as inverse Chebyshev filters, the Type II 

Chebyshev filter type is less common because it does not 

roll off as fast as Type I, and requires more components. It 

has no ripple in the pass band, but does have equiripple in 

the stop band. The gain is: 

����, �I� = 1
J1 + 112�K�� �- L3��

    … … … . .     4.1 

 

In the stop band, the Chebyshev polynomial oscillates 

between -1 and 1 so that the gain will oscillate between 

zero and 
#1#M NOP and the smallest frequency at which this 

maximum is attained is the cutoff frequency  The  ��  

parameter ε is thus related to the stop band and attenuation Q  in decibels by: 

2 = 1√10�.#R − 1 

For a stop band attenuation of 5dB, ε = 0.6801; for an 

attenuation of 10dB, ε = 0.3333. The f0 = ω0/2π is the 

cutoff frequency. The 3 dB frequency fH is related to f0 by: 

ST = S��U�ℎ �1! cos%# 12�  … … … … … … 4.2 

  

Fig.4.1 The frequency response of a 5th order type II chebyshev low pass 

filter with 2 = 0.01 [6] 

 

 

Fig. 4.2 Magnitude response of a Chebyshev-II Low pass filter with 2 = 0.009098045 
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Fig. 4.3 cost of a Chebyshev-II Low pass filter 

5. Elliptic Filter 

An elliptic filter (also known as a Cauer filter, named 

after Wilhelm Cauer, or as a Zolotarev filter, after Yegor 

Zolotarev) is a signal processing filter with 

equalized ripple (equiripple) behavior in both the pass 

band and the stop band. The amount of ripple in each band 

is independently adjustable, and no other filter of equal 

order can have a faster transition in gain between the pass   

band and the stop band, for the given values of ripple 

(whether the ripple is equalized or not). Alternatively, one 

may give up the ability to independently adjust the pass 

band and stop band ripple, and instead design a filter which 

is maximally insensitive to component variations. 

As the ripple in the stop band approaches zero, the filter 

becomes a type I Chebyshev filter. As the ripple in the pass 

band approaches zero, the filter becomes a type 

II Chebyshev filter and finally, as both ripple values 

approach zero, the filter becomes a Butterworth filter. The 

gain of a low pass elliptic filter as a function of angular 

frequency ω is given by: 

 

����� = 111 + 2�X���Y, � ��- � … … … … … … . .5.1 

Where Rn is the nth order elliptic rational function 
(sometimes known as a Chebyshev rational function) and �� is the cutoff frequency 2 is the ripple factor 

 Y is the selectivity factor 

The value of the ripple factor specifies the pass band 

ripple, while the combination of the ripple factor and the 

selectivity factor specify the stop band ripple. 

����� = 111 +   Z�K1 �- L3��
… … … … … … … … … .  5.2 

• In the pass band, the elliptic rational function varies 

between zero and unity. The gain of the pass band 

therefore will vary between 1 and  1 √1 + 2�-    . 

• In the stop band, the elliptic rational function varies 

between infinity and the discrimination factor [�  which is defined as: 

[� = X�=� Y, Y�   

The gain of the stop band therefore will vary between 0 

and 1 \1 + 2�[��]     . 

• In the limit of Y → ∞  the elliptic rational function 

becomes a Chebyshev polynomial, and therefore 

the filter becomes a Chebyshev type I filter, with 

ripple factor ε 

• Since the Butterworth filter is a limiting form of 

the Chebyshev filter, it follows that in the limit 

of   Y → ∞ , � → 0  and 2 → 0  such that 

 2, X�  KY, 1 ��- L = 1   the filter becomes 

a Butterworth filter 
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• In the limit of Y → ∞   , 2 → 0    and � → 0    such 

that Y�� = 1 and 2 [� = Z , the filter becomes a 

Chebyshev type II filter with gain 

 ���� = 111 +   Z�K1 �- L3��
 

 

 

Fig. 5.5 The frequency response of a 4th order elliptic low pass filter 2 =0.5 _!` Y = 1.05. a. Also shown that the minimum gainin the pass band 

and the maximum gain in the stop band and the transition region between 

normalized frequency 1 and  Y . [6] 

 

Fig.5.2. Close up the transition region of the above plot [6] 

  

Fig. 5.3 Magnitude response of a Elliptic Low pass filter 

 

FILTER 
ORDER 

MUL. ADDER STATES MPIS APIS 

 
6 
 

 
12 

 
12 

 
6 

 
12 

 
12 

 

Fig. 5.4 cost of an Elliptic Low Pass filter 

 
 [B] PROPOSED FILTER DESIGN 

A Elliptic low filter is used to shape and oversample a 

symbol stream before modulation/transmission as well as 

after modulation and demodulation.  It is used to reduce 

the bandwidth of the oversampled symbol stream without 

introducing inters symbol interference. 
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In this proposed work Elliptic filter has been designed 

using filter order 06 as compare to other filters 

(Butterworth, Chebyshev) shown in Table 6.1. 

  
Table 6.1 

 Cost analysis IIR Elliptic Low Pass filter 
 

FILTER 
TYPE 

ORDE
R 

MUL. ADD
ER 

STATES MPIS APIS 

Butter 
worth 

18 36 36 18 36 36 

Chebysh
ev type I  
 

10 21 20 10 21 20 

Chebysh
ev type 
II 
 

10 20 20 10 20 20 

Elliptic 
Filter 
 

06 12 12 06 12 12 

             
 

[C] RSEULTS & DISCUSSION 
 
Parametric equalizers are designed as second-order IIR 

filters. These filters have the drawback that because of 

their low order (Elliptic low Pass filter order=6), they can 

present relatively large ripple or transition regions and may 

overlap with each other when several of them are 

connected in cascade. 

 
 

 
Fig. 7.1 Magnitude response of a Elliptic High Pass filter 

High-order (Elliptic Pass Band Filter order = 08) designs 
provide much more control over the shape of each filter. 

 

 
Fig. 7.2 Magnitude response of a Elliptic Band Pass filter 

Notice that we have specified both a pass band gain (Gp) 

and a stop band gain (Gst). Given parameters (filter order = 

8) allow for the Elliptic Stop band filter to ripple in the 

pass band and stop band with the advantage of providing 

steeper transitions between pass band and stop band. 

 

 
Fig. 7.3 Magnitude response of a Elliptic Band Stop filter 

TABLE 7.1 
IIR FILTER TYPES 

 
FILTER 
TYPE 

ORDE
R 

MUL. ADDE
R 

STATE
S 

MPIS APIS 

Elliptic Low 
Pass Filter 

 

 
06 

 
12 

 
12 

 
06 

 
12 

 
12 

Elliptic High 
Pass  Filter 

 

 
06 

 
12 

 
12 

 
06 

 
12 

 
12 

Elliptic Pass       
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Band Filter 
 

08 16 16 08 16 16 

Elliptic Stop 
Band Filter 
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16 

 
 

[D] CONCLUSION 
 
Theory and practice prove, digital audio signal Processing 

system using IIR digital Elliptic filter,  

The Elliptical IIR Low Pass Filter is examined and 

comparison from the Butterworth and Chebyshev is done. 

The Elliptical Filter is minimizing the order of filter 

optimal to 75% to Butterworth Filter, and 42.5% to 

Chebyshev. 

Elliptic Stop band filter to ripple in the pass band and stop 

band with the advantage of providing steeper transitions 

between pass band and stop band. 
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